МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХПИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. Р.Е. АЛЕКСЕЕВА»

ДЗЕРЖИНСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ (филиал)

Кафедра «Химические и пишевые технологии»

УТВЕРЖДАЮ;

И.о. пиректора института

_ А.М.Петровский

0. 150

2020 r.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Теплотехника

Направление подготовки

23.03.03 «Эксилуатация транспортно-технологических машин и комплексов»

Направленность (профиль)
«Автомобили и автомобильное козяйство»

Уровень образования

Бакалаериат

Форма обучения

Owner

Street, participancy, provinced

Составители рабочей программы дисциплины

поцент, к.т.н. (поляность, учен	ДОЦСИТ 14 степень, завые)		
	Hay to the same		УМ.Н. Чубенко/
	NOOMSCIA.		PR. MEGO)
Рибочая програ	мма принята на засе	елавии кофедры «Химически	е и пищевые технологияю
407 x 21	2020 r.	Протокол заседания № 5	q
Заведующий ка	федрой		
1096-01	2020r.	_ Kon	/O.A.Kasanmen/
		онепортные системы» (какиномучие видуары)	В.А.Динков
	-	- Jan-	В.А.Диков
Декан инженери факультета	о-технологическиго		
TO-MINISTER		CK-	Г.В.Пастухови
		(SDENEDA)	(инстифренси листиц).
Предоедатель мен «Актомобили и ав	олической комиссия томобидьное козяй	и по профалю подготовки ство»	×
		(Academic Decades)	В.Ф. Куленов
		(Andhara)	(ростифиона подпась)
Заместитель пачал	ванка ОУМБО		
		Ac.	Е.Г. Воробъева Дурившина
		60000 graces	пфрока побичин)

СОДЕРЖАНИЕ

1.	Наименование дисциплины	4
2.	Перечень планируемых результатов обучения по дисциплине	4
3.	Место дисциплины в структуре образовательной программы бакалавриата	5
4.	Объем дисциплины (модуля) в зачетных единицах с указанием количества часов,	
выд	деленных на контактную работу обучающихся с преподавателем (по видам учебных	
зан	ятий) и на самостоятельную работу обучающихся	6
5.	Содержание дисциплины, структурированное по темам (разделам), с указанием	
отв	веденного на них количества академических или астрономических часов и видов	
уче	бных занятий	7
6.	Перечень учебно-методического обеспечения для самостоятельной работы	
обу	/чающихся по дисциплине	12
7.	Фонд оценочных средств для проведения промежуточной аттестации обучающихся	
по	дисциплине	15
8.	Перечень основной и дополнительной учебной литературы, необходимой для	
осв	воения дисциплины	27
9.	Перечень ресурсов информационно-телекоммуникационной сети «Интернет»,	
нес	обходимых для освоения дисциплины	29
10.	Методические указания для обучающихся по освоению дисциплин	31
11.	Перечень информационных технологий, используемых при осуществлении	
обр	разовательного процесса по дисциплине, включая перечень программного	
_	еспечения и информационных справочных систем (при необходимости)	32
	Описание материально-технической базы, необходимой для осуществления	
	разовательного процесса по дисциплине	32

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

1. Наименование дисциплины

Дисциплина Б1.Б.14 «Теплотехника» - это дисциплина по направлению подготовки 23.03.03 «Эксплуатация транспортно-технологических машин и комплексов», уровень — бакалавриат. Профильной для данной дисциплины являются производственно-технологическая и сервисно-эксплуатационная виды деятельности.

Данная дисциплина готовит к решению следующих задач профессиональной деятельности:

- обслуживание транспортных и транспортно-технологических машин и транспортного оборудования;
- организация метрологического обеспечения технологических процессов, использование типовых методов контроля качества выпускаемой продукции, машин и оборудования;
- надзор за безопасной эксплуатацией транспортных и транспортно-технологических машин и оборудования.

Объектами профессиональной деятельности бакалавров являются: транспортные и технологические машины, предприятия и организации, проводящие их эксплуатацию, хранение, заправку, техническое обслуживание, ремонт и сервис, а также материально-техническое обеспечение.

2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы (компетенциями выпускников).

2.1.Учебная дисциплина обеспечивает:

- формирование **части** компетенции ОПК-2 – владением научными основами технологических процессов в области эксплуатации транспортно-технологических машин и комплексов.

Признаки и уровни освоения компетенций приведены в табл. 2.1.

Таблица 2.1 – Признаки и уровни освоения компетенций

Код и содержание компе-	Формулировка дисципли-	Уровень формирования		
тенции	нарной части компетен-	компетенции,		
	ции	место дисциплины		
ОПК-2 владением научными	ОПК-2 владение научными	Формируется частично в со-		
основами технологических	основами технологических	ставе дисциплины (таблица		
процессов в области эксплуа-	процессов в области экс-	3.1). Итоговый контроль		
тации транспортно-	плуатации транспортно-	сформированности компе-		
технологических машин и	технологических машин	тенции ОПК-2 осуществля-		
комплексов		ется в ходе подготовки к		
		процедуре защиты и проце-		
		дуры защиты выпускной		
		квалификационной работы.		
		Уровень – пороговый		

2.2. В результате изучения дисциплины бакалавр должен овладеть следующими знаниями, умениями и навыками в рамках формируемых компетенций (табл. 2.2):

Таблица 2.2 - Планируемые результаты обучения

Уровень освоения	Описание признаков	Планируемые результаты обучения (показатели достижения заданного уровня освоения компетенции)					
компетенции	проявления компетенции	Знать	Уметь	Владеть			
		1. ОПК-	-2				
пороговый	сов в области	Содержание, предмет и задачи теплотехники, основные газовые законы технической термодинамики и теплообмена, теоретические циклы поршневых ДВС.	раметры состояния, функции состояния и процесса, рассчитывать циклы ДВС.	вых смесей, навы-ками проведения			

При наличии лиц с ограниченными возможностями здоровья устанавливается особый порядок освоения дисциплины, предусматривающий возможность достижения ими планируемых результатов обучения с учетом состояния здоровья и имеющихся заболеваний.

3. Место дисциплины в структуре образовательной программы бакалавриата

- **3.1.Дисциплина Б1.Б.14** «**Теплотехника» (модуль) реализуется** в рамках базовой части Блока 1 (Б1.Б.14).
 - 3.2.Дисциплина (модуль) изучается на 2 курсе в 3 семестре.
 - 3.3. Требования к входным знаниям, умениям и владениям студентов:

Для освоения дисциплины Б1.Б.14 «Теплотехника» студент должен:

Знать:

- -Содержание, предмет и задачи теплотехники;
- -Основные газовые законы технической термодинамики и теплообмена;
- -Пути совершенствования и повышения КПД тепловых и холодильных машин, ПТУ, ГТУ;
- -Теоретические циклы поршневых ДВС;
- -Ооктановые и цетановые числа и пути их повышения;
- -Основные параметры цикла ДВС, водяного пара;
- -Цикл Ренкина, термический КПД цикла;
- -Пути повышения КПД цикла;
- -Основы теплофикации;
- -Общий коэффициент использования теплоты топлива.

Уметь:

Рассчитывать параметры состояния;

- -Функции состояния, процесса, рассчитывать циклы ДВС с изохорным и изобарным подводом количества теплоты, со смешанным подводом количества теплоты;
- -Осуществлять информационный поиск в научной, периодической, патентной литературе, интернете;

- -Обобщать информацию и делать выводы;
- -Использовать теоретические знания при выполнении практических задач.

Владеть:

- Методами расчета идеальных газовых смесей;
- -Навыками проведения теоретических исследований термодинамических циклов и оценки их работ;
- -Навыками расчета идеальных термодинамических циклов поршневых ДВС,
- -Навыками исследований теплообменных процессов при выполнении лабораторных работ.

Этапы формирования компетенций и ожидаемые результаты обучения, определяющие уровень сформированности компетенции ОПК-2, указаны в табл. 3.1, 3.2.

Таблица 3.1 – Дисциплины, участвующие в формировании компетенции ОПК-2, вместе с дисциплиной Теплотехника

Код	Названия учебных дисциплин,		Курсы / семестры обучения								
компетен-	модулей, практик, участвующих в формировании компетенции	1 в	1 курс		2 курс		рс	4 курс			
	вместе с данной дисциплиной	сем	естр	семес	тр	семе	стр	семестр			
			2	3	4	5	6	7	8		
ОПК-2	Гидравлика и гидропневмопривод										
	Теоретическая механика										
	Теплотехника										
	Электротехника и электроника										
	Подъемно-транспортные механизмы										
	Теория механизмов и машин										
	Подготовка к процедуре защиты и процедура защиты ВКР										

Таблица 3.2 – Этапы формирования компетенций вместе с дисциплиной

	Наименование	Наименования дисциплин					
Код	компетенции (дисциплинарной части компетенции)	Начальный этап (пороговый уровень)	Основной этап (углубленный уро- вень)	Завершающий этап (продвинутый уровень)			
ОПК-2	Владением научными основами технологических процессов в области эксплуатации транспортнотехнологических машин и комплексов	1. Теплотехника 2. Электротехника и электроника	1. Теория механизмов и машин 2. Теоретическая механика 3. Гидравлика и гидропневмопривод 4. Подъемнотранспортные механизмы	1. Подготовка к процедуре защиты и процедура защиты ВКР			

4. Объем дисциплины (модуля) в зачетных единицах с указанием количества часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Объем дисциплины (общая трудоемкость) составляет 3 зачетные единицы (з.е), что соответствует 108 академическим часам, в том числе контактная работа обучающихся с преподавателем 55 часов, самостоятельная работа обучающихся 53 часа.

В табл. 4.1 представлена структура дисциплины.

Таблица 4.1- Структура дисциплины

Вид учебной работы	Всего часов	Семестр
		3
1. Контактная работа обучающихся с преподавателем (по видам учебных занятий) (всего), в том числе:	55	55
1.1. Аудиторные занятия (всего), в том числе:	51	51
- лекции (Л)	17	17
- лабораторные работы (ЛР)	17	17
- практические занятия (ПЗ)	17	17
- практикумы (П)	-	-
1.2. Внеаудиторные занятия (всего), в том числе:	4	4
- групповые консультации по дисциплине	4	4
- групповые консультации по промежуточной аттестации (экзамен)	-	-
- индивидуальная работа преподавателя	-	-
с обучающимся:		
- по проектированию: проект (работа)		
- по составлению реферата		
2. Самостоятельная работа студента (СРС) (всего)	53	53
Вид промежуточной аттестации (зачет/экзамен)	зачет	зачет
Общая трудоемкость, часы/зачетные единицы	108/3	108/3

5. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

5.1. Разделы дисциплины и виды занятий

Распределение учебной нагрузки по разделам дисциплины приведено в табл. 5.1.

Тематическое содержание разделов дисциплины с перечислением содержащихся в них дидактических единиц приведено в табл. 5.2.

Темы практических занятий приведены в табл. 5.3, темы лабораторных работ - в табл. 5.4, виды самостоятельной работы — в табл. 5.5.

Таблица 5.1 - Распределение учебной нагрузки по разделам дисциплины

			Виды занятий и их трудоемкость, часы						
Номер раздела			Лекции	Практические за- нятия	Лабораторные ра- боты	Внеаудиторная кон- тактная работа	CPC	Формируемые ком- петенции ОК, ОПК, ПК, ПСК	
1	Введение	2	1	-	-	-	1	ОПК-2	
2	Термодинамический процесс	17	4	5	-	-	8	ОПК-2	
3	Реальные газы	17	2	7	-	-	8	ОПК-2	

4	Циклы ПТУ	6	2	-	-	-	4	ОПК-2
5	Циклы ДВС	18	3	5	-	-	10	ОПК-2
6	Циклы ГТУ	6	2	-	-	-	4	ОПК-2
7	Теплопроводность	15	1	-	6	2	6	ОПК-2
8	Конвективный теплообмен	15	1	-	6	2	6	ОПК-2
9	Теплопередача	12	1	-	5	-	6	ОПК-2
	Итого	108	17	17	17	4	53	

Таблица 5.2 - Содержание разделов дисциплины (по лекциям)

№ разде- ла	Наименование раздела	Код компе- тенции	Содержание темы (наименование темы, перечисление дидактических единиц)	Трудо- емкость (час.)	Технология оценивания
1	Введение	ОПК-2	Тема 1.1 Предмет и задачи современной теплотехники. Параметры состояния.	1	Собеседо-
2	Термодинами-	ОПК-2	Тема 2.1 Первый закон термодинамики. Внутренняя энергия. Теплоемкость газов. Энтальпия. Тема 2.2 Второй закон термодинамики. Энтропия. Сущность 2-го закона.	1	Собеседо-
	ческий про- цесс	OTIK 2	Тема 2.3 Термодинамические циклы. Прямой обратимый цикл Карно. Обратный цикл Карно. Тема 2.4 Термодинамические процессы идеальных газов в закрытых системах.	1	вание
3	Реальные газы	ОПК-2	Тема 3.1 Реальные газы. Управление Вандер-Ваальса. Парообразование. Критические параметры. Диаграммы.	2	Собеседо-
4	Циклы ПТУ	ОПК-2	Тема 4.1 Циклы ПТУ. Цикл Ренкина. Основы теплофикации.	2	Собеседо-
5	Циклы ДВС	ОПК-2	Тема 5.1 Циклы ДВС. Циклы с подводом количества теплоты в процессе V=const, P=const и со смешанным подводом. Количества теплоты. Сравнение циклов поршневых	2	Собеседо-
	диот две		ДВС. Тема 5.2 Моторное топливо. Детонационная стойкость топлива. Октановое и цетановое числа.	1	вание
6	Циклы ГТУ	ОПК-2	Тема 6.1 Циклы газотурбинных установок. Циклы с подводом количества теплоты в процессе P=const, V=const. Сравнение циклов и методы повышения КПД цикла ГТУ.	2	Собеседование
7	Теплопровод- ность	ОПК-2	Тема 7.1 Основы теории теплопроводности. Закон Фурье. Определение коэффициента теплопроводности.	1	Собеседо-
8	Конвективный теплообмен	ОПК-2	Тема 8.1 Конвективный теплообмен. Закон Ньютона-Рихмана. Определение коэффициента теплопередачи.	1	Собеседование
9	Теплопередача	ОПК-2	Тема 9.1 Процесс теплопередачи. Теплообменные аппараты. Определение коэффици-	1	Собеседо- вание

	ента теплопередачи.		
	Итого	17	

Таблица 5.3 – Темы практических занятий

№ разде- ла	Наименование раздела	Код компе- тенции	Темы практических занятий	Трудо- ем- кость (час.)	Технология оценивания
2	Термодинамический процесс	ОПК-2	Первый закон термодинамики Теплоемкость газов Основные газовые процессы Второй закон термодинамики Цикл Карно	1 1 1 1 1	Групповые практические задания, отчет о выполнении индивидуального самостоятельного задания
3	Реальные газы	ОПК-2	Основные газовые законы Газовые смеси	3 4	Групповые практические задания, отчет о выполнении индивидуального самостоятельного задания
5	Циклы ДВС	ОПК-2	Теоретические циклы поршневых двигателей внутреннего сгорания	5	Групповые практические задания, отчет о выполнении индивидуального самостоятельного задания
			итого	17	

Таблица 5.4 – Темы лабораторных занятий

№ раз- дела	Наименование раздела	Код компе- тенции	Темы лабораторных работ	Трудоем- кость (час.)	Технология оценивания
7	Теплопроводность	ОПК-2	Определение коэффициента тепло- проводности сыпучих материалов методом трубы.	6	Отчет по лабора- торной работе
8	Конвективный тепло- обмен	ОПК-2	Исследование теплоотдачи горизонтальной трубы при свободном движении воздуха.	6	Отчет по лабора- торной работе
9	Теплопередача	ОПК-2	Определение коэффициента тепло- передачи	5	Отчет по лабора- торной работе
		17			

Таблица 5.5 - Самостоятельная работа студентов

№	Наименование	Код	Виды самостоятельной работы	Трудоем-	Технология
раз-	темы	компе-	(детализация видов самостоятельной работы	кость	оценивания

дела		тенции	по каждому разделу)	(час.)	
1	Тема 1.1 Предмет и задачи современной теплотехники. Параметры состояния.	ОПК-2	- чтение основной и дополнительной литературы, рекомендованной по курсу; -подготовка к собеседованию	0,5 0,5	Собеседо- вание
2	Тема 2.1 Первый закон термодинамики. Внутренняя энергия. Теплоемкость газов. Энтальпия.	ОПК-2	 чтение основной и дополнительной литературы, рекомендованной по курсу; подготовка к практическим занятиям; подготовка к тестированию; подготовка к собеседованию 	0,5 0,5 0,5 0,5	Собеседование, тестирование
	Тема 2.2 Второй закон термодинамики. Энтропия. Сущность 2-го закона.	ОПК-2	 чтение основной и дополнительной литературы, рекомендованной по курсу; подготовка к практическим занятиям; подготовка к тестированию; подготовка к собеседованию 	0,5 0,5 0,5 0,5	Собеседование, тестирование
	Тема 2.3 Термодинамические циклы. Прямой обратимый цикл Карно. Обратный цикл Карно.	ОПК-2	 чтение основной и дополнительной литературы, рекомендованной по курсу; подготовка к практическим занятиям; подготовка к тестированию; подготовка к собеседованию 	0,5 0,5 0,5 0,5	Собеседование, тестирование
	Тема 2.4 Термодинамические процессы идеальных газов в закрытых системах.	ОПК-2	 чтение основной и дополнительной литературы, рекомендованной по курсу; подготовка к практическим занятиям; подготовка к тестированию; подготовка к собеседованию 	0,5 0,5 0,5 0,5	Собеседование, тестирование
3	Тема 3.1 Реальные газы. Управление Ван-дер-Ваальса. Парообразование. Критические параметры. Диаграммы.	ОПК-2	 чтение основной и дополнительной литературы, рекомендованной по курсу; подготовка к практическим занятиям; подготовка к тестированию; подготовка к собеседованию 	2 2 2 2 2	Собеседование, тестирование
4	Тема 4.1 Циклы ПТУ. Цикл Ренки- на. Основы теплофика- ции.	ОПК-2	- чтение основной и дополнительной литературы, рекомендованной по курсу; -подготовка к собеседованию	2 2	Собеседо- вание

5	Тема 5.1 Циклы ДВС. Циклы С подводом количества теплоты в процессе V=const, P=const и со смешанным подводом. Количества теплоты. Сравнение циклов поршневых ДВС.	ОПК-2	 чтение основной и дополнительной литературы, рекомендованной по курсу; подготовка к практическим занятиям; подготовка к тестированию; подготовка к собеседованию 	2 2 1 1	Собеседование, тестирование
	Тема 5.2 Моторное топливо. Детонационная стойкость топлива. Октановое и цетановое числа.	ОПК-2	 чтение основной и дополнительной литературы, рекомендованной по курсу; подготовка к практическим занятиям; подготовка к тестированию; подготовка к собеседованию 	1 1 1 1	Собеседование, тестирование
6	Тема 6.1 Циклы газотурбинных установок. Циклы с подводом количества теплоты в процессе P=const, V=const. Сравнение циклов и методы повышения КПД цикла ГТУ.	ОПК-2	- чтение основной и дополнительной литературы, рекомендованной по курсу; -подготовка к собеседованию	2 2	Собеседо- вание
7	Тема 7.1 Основы теории теплопроводности. Закон Фурье. Определение коэффициента теплопроводности.	ОПК-2	 чтение основной и дополнительной литературы, рекомендованной по курсу; подготовка к лабораторным работам; подготовка к тестированию; подготовка к собеседованию 	2 2 1 1	Отчет о лаборатор- ной работе, собеседова- ние, тести- рование
8	Тема 8.1 Конвективный теплообмен. Закон НьютонаРихмана. Определение коэффициента теплопередачи.	ОПК-2	 чтение основной и дополнительной литературы, рекомендованной по курсу; подготовка к лабораторным работам; подготовка к тестированию; подготовка к собеседованию 	2 2 1 1	Отчет о лаборатор- ной работе, собеседова- ние, тести- рование
9	Тема 9.1 Процесс теплопередачи. Теплообмен-	ОПК-2	 чтение основной и дополнительной литературы, рекомендованной по курсу; подготовка к лабораторным работам; подготовка к тестированию; 	2 2 1	Отчет о лаборатор- ной работе, собеседова-

ные аппараты.	-подготовка к собеседованию	1	ние, тести-
Определение			рование
коэффициента			
теплопереда-			
чи.			
	Итого	53	

6. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

6.1.Темы и содержание учебных занятий в форме самостоятельной работы представлены в табл. 6.1.

Таблица 6.1. - Темы и содержание учебных занятий в форме самостоятельной работы

Раздел	Тема	Содержание занятий	Трудоемкость, часов
1	Тема 1.1 Предмет и задачи современной теплотехники. Параметры состояния.	 Чтение основного учебника: Нащокин В.В. Техническая термодинамика и теплопередача. Высшая школа. 1980. 469 с. Работа с основными понятиями. Работа с вопросами для самоконтроля. Работа с вопросами для подготовки к собеседованию. 	1
	Тема 2.1 Первый закон термодина-мики. Внутренняя энергия. Теплоемкость газов. Энтальпия.	1. Чтение основного учебника: Нащокин В.В. Техническая термодинамика и теплопередача. Высшая школа. 1980. 469 с. 2. Работа с основными понятиями. 3. Работа с вопросами для самоконтроля. 4. Выполнение практических заданий по теме. 5. Работа с вопросами для подготовки к собеседованию 6. Чтение дополнительной литературы: Рабинович О.М. Сборник задач по технической термодинамике Машиностроение. 1973344 с.	2
2	Тема 2.2 Второй закон термодина-мики. Энтропия. Сущность 2-го закона.	 Чтение основного учебника: Нащокин В.В. Техническая термодинамика и теплопередача. Высшая школа. 1980. 469 с. Работа с основными понятиями. Работа с вопросами для самоконтроля. Выполнение практических заданий по теме. Работа с вопросами для подготовки к собеседованию Чтение дополнительной литературы: Рабинович О.М. 	2
	Тема 2.3 Термо- динамические циклы. Прямой обратимый цикл Карно. Обратный цикл Карно.	Сборник задач по технической термодинамике Машино- строение. 1973344 с. 1. Чтение основного учебника: Нащокин В.В. Техническая термодинамика и теплопередача Высшая школа. 1980 469 с. 2. Работа с основными понятиями. 3. Работа с вопросами для самоконтроля. 4. Выполнение практических заданий по теме. 5. Работа с вопросами для подготовки к собеседованию 6. Чтение дополнительной литературы: Рабинович О.М. Сборник задач по технической термодинамике Машино-строение. 1973344 с.	2
	Тема 2.4 Термо- динамические процессы идеаль-	1. Чтение основного учебника: Нащокин В.В. Техническая термодинамика и теплопередача Высшая школа. 1980 469 с. 2. Работа с основными понятиями.	

	ных газов в за- крытых системах.	3. Работа с вопросами для самоконтроля. 4. Выполнение практических заданий по теме. 5. Работа с вопросами для подготовки к собеседованию 6. Чтение дополнительной литературы: Рабинович О.М. Сборник задач по технической термодинамике Машиностроение. 1973344 с.	2
3	Тема 3.1 Реальные газы. Управление Ван-дер-Ваальса. Парообразование. Критические параметры. Диаграммы.	 Чтение основного учебника: Нащокин В.В. Техническая термодинамика и теплопередача. Высшая школа. 1980. 469 с. Работа с основными понятиями. Работа с вопросами для самоконтроля. Выполнение практических заданий по теме. Работа с вопросами для подготовки к собеседованию 6. Чтение дополнительной литературы: Рабинович О.М. Сборник задач по технической термодинамике Машиностроение. 1973344 с. 	8
4	Тема 4.1 Циклы ПТУ. Цикл Ренкина. Основы теплофикации.	1. Чтение основного учебника: Нащокин В.В. Техническая термодинамика и теплопередача Высшая школа. 1980 469 с. 2. Работа с основными понятиями. 3. Работа с вопросами для самоконтроля. 4. Работа с вопросами для подготовки к собеседованию 5. Чтение дополнительной литературы: Рабинович О.М. Сборник задач по технической термодинамике Машиностроение. 1973344 с.	4
5	Тема 5.1 Циклы ДВС. Циклы с подводом количества теплоты в процессе V=const, P=const и со смешанным подводом. Количества теплоты. Сравнение циклов поршневых ДВС.	 Чтение основного учебника: Нащокин В.В. Техническая термодинамика и теплопередача. Высшая школа. 1980. 469 с. Работа с основными понятиями. Работа с вопросами для самоконтроля. Выполнение практических заданий по теме. Работа с вопросами для подготовки к собеседованию 6. Чтение дополнительной литературы: Рабинович О.М. Сборник задач по технической термодинамике Машиностроение. 1973. 344 с. 	6
5	Тема 5.2 Моторное топливо. Детонационная стойкость топлива. Октановое и цетановое числа.	1. Чтение основного учебника: Нащокин В.В. Техническая термодинамика и теплопередача Высшая школа. 1980 469 с. 2. Работа с основными понятиями. 3. Работа с вопросами для самоконтроля. 4. Выполнение практических заданий по теме. 5. Работа с вопросами для подготовки к собеседованию 6. Чтение дополнительной литературы: Рабинович О.М. Сборник задач по технической термодинамике Машиностроение. 1973344 с.	4
6	Тема 6.1 Циклы газотурбинных установок. Циклы с подводом количества теплоты в процессе P=const, V=const. Сравнение циклов и методы повышения КПД цикла ГТУ.	 Чтение основного учебника: Нащокин В.В. Техническая термодинамика и теплопередача. Высшая школа. 1980. 469 с. Работа с основными понятиями. Работа с вопросами для самоконтроля. Работа с вопросами для подготовки к собеседованию Чтение дополнительной литературы: Рабинович О.М. Сборник задач по технической термодинамике Машиностроение. 1973. 344 с. 	4

7	Тема 7.1 Основы теории теплопроводности. Закон Фурье. Определение коэффициента теплопроводности.	1. Чтение основного учебника: Нащокин В.В. Техническая термодинамика и теплопередача Высшая школа. 1980 469 с. 2. Работа с основными понятиями. 3. Работа с вопросами для самоконтроля. 4. Работа с вопросами для подготовки к собеседованию 5. Чтение дополнительной литературы: Рабинович О.М. Сборник задач по технической термодинамике Машиностроение. 1973344 с. 6. Чтение дополнительной литературы: В.И. Шишкин. Экспериментальное изучение процессов теплообмена. ГПИ им. А.А. Жданова. 1983-119с.	6
8	Тема 8.1 Конвективный теплообмен. Закон Ньютона-Рихмана. Определение коэффициента теплопередачи.	1. Чтение основного учебника: Нащокин В.В. Техническая термодинамика и теплопередача Высшая школа. 1980 469 с. 2. Работа с основными понятиями. 3. Работа с вопросами для самоконтроля. 4. Работа с вопросами для подготовки к собеседованию 5. Чтение дополнительной литературы: Рабинович О.М. Сборник задач по технической термодинамике Машиностроение. 1973344 с. 6. Чтение дополнительной литературы: В.И. Шишкин. Экспериментальное изучение процессов теплообмена. ГПИ им. А.А. Жданова. 1983-119с.	6
9	Тема 9.1 Процесс теплопередачи. Теплообменные аппараты. Определение коэффициента теплопередачи.	1. Чтение основного учебника: Нащокин В.В. Техническая термодинамика и теплопередача Высшая школа. 1980 469 с. 2. Работа с основными понятиями. 3. Работа с вопросами для самоконтроля. 4. Работа с вопросами для подготовки к собеседованию 5. Чтение дополнительной литературы: Рабинович О.М. Сборник задач по технической термодинамике Машиностроение. 1973344 с. 6. Чтение дополнительной литературы: В.И. Шишкин. Экспериментальное изучение процессов теплообмена. ГПИ им. А.А. Жданова. 1983-119с.	6

6.2. Список литературы для самостоятельной работы

Список литературы для самостоятельной работы представлен в табл. 6.2.

Таблица 6.2. - Список литературы для самостоятельной работы

№ п/п	Наименование источника
1	Нащокин В.В. Техническая термодинамика и теплопередача. Учебник для вузов с грифом Минобразования М.: Высшая школа 1980469 с.
2	Рабинович О.М. Сборник задач по технической термодинамике. М.: Машиностроение. 1973344 с.

6.3. Методическое сопровождение самостоятельной работы

Самостоятельная работа по дисциплине регламентируется следующими разработками:

- 1. «Методические рекомендации обучающимся по выполнению расчетнографической работы по курсу «Техническая термодинамика и теплотехника» для студентов специальности 190601 «Автомобили и автомобильное хозяйство» Н. Новгород. 2009 -16с.
- 2. Методические рекомендации по организации и планированию самостоятельной работы студентов по дисциплине. Приняты Учебно-методическим советом НГТУ им. Р.Е. Алексеева, протокол № 2 от 22 апреля 2013г.

7. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

7.1.Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

Этапы формирования компетенций (с указанием дисциплин, формирующих компетенции совместно с дисциплиной Б1.Б.14 «Теплотехника») отражены в разделе 3 (табл. 3.1 и 3.2).

Зная этапы формирования компетенции и место дисциплины Б1.Б.14 «Теплотехника» в этой ценностной цепочке, создаем систему оценки уровней сформированности компетенции и результатов обучения по данной дисциплине. Для этого планируемые результаты обучения (знать, уметь и владеть) оцениваем, применив определенные критерии оценки, для чего формируем шкалу и процедуры оценивания (табл. 7.1).

Для каждого результата обучения выделяем 4 критерия, соответствующих степени сформированности данной компетенции (или ее части).

Эталонный планируемый результат соответствует критерию 4 (точность, правильность, соответствие).

Критерии 1-3 – показатели «отклонений от «эталона»».

Критерий 2 – минимальный приемлемый уровень сформированности компетенции (или ее части).

Таблица 7.1. – Шкалы оценивания на этапе промежуточной аттестации по дисциплине

	Наимено-		Шкала (у	Шкала (уровень) оценивания (ј – уровень оценивания)			
No	вание	Технология	ниже по-	Порого-	Углублен-	Продвинутый	Этапы
ПП	этапа	оценивания	рогового	вый	ный	К4	контроля
	Tana		К1	К2	К3	IC+	
1	Усвоение	Знаниевая компо-	Отсутст-	Не полное	Хорошее	Отличное ус-	
	материала	нента	вие усвое-	усвоение	усвоение	воение	
	дисциплины		кин				
		Деятельностная	Не полное	Полное	Правильное	Правильное	
		компонента (За-	выполнение	выполнение	выполнение	выполнение	зачет
		дачи, задания)	практичес-	практических	заданий от-	заданий без	
			ких и лабо-	и лаборатор-	дельными	ошибок	
			раторных	ных заданий	недочетами		
			заданий	с ошибками			

Критерии для определения уровня сформированности компетенций в рамках дисциплины при промежуточной аттестации — зачет:

Знаниевый компонент (знания) включает в себя планирование знаний на следующих уровнях:

- уровень знакомства с теоретическими основами-31;
- уровень воспроизведения-32;
- уровень извлечения новых знаний- 33.

Деятельностный компонент (умения и навыки) планируется на следующих уровнях:

- умение решать типовые задачи с выбором известного метода, способа -У1;
- умение решать задачи путем комбинации известных методов, способов-У2;
- умение решать нестандартные задачи У₃.

7.2. Описание показателей и критериев оценивания компетенций на различных этапах их формировании, описание шкал оценивания (табл. 7.2)

Таблица 7.2 – Показатели достижений заданного уровня освоения компетенций в зависимости от этапа формирования

Планируемые результаты	Крите	рии оценивания результат	ов обучения (уровень усвоения	я)	Процедуры оцени- вания
дисциплине	1. Отсутствие усвоения (ниже порогового) К1	2. Неполное усвоение (пороговый) К2	3. Хорошее усвоение (углубленный) КЗ	4. Отличное усвоение (продвинутый) К4	
Знать <u>ОПК-2</u>					
мет и задачи теплотехни- ки, основные газовые	Не знает предмет и задачи теплотехники, основные газовые законы технической термодинамики и теплообмена	Знает предмет и задачи теплотехники, основные газовые законы технической термодинамики и теплообмена	задачи теплотехники, основные газовые законы технической термодинамики и теплообмена, теоретические циклы тепловых и холодильных ма-	Знает содержание, предмет и задачи теплотехники, основные газовые законы технической термодинамики и теплообмена, теоретические циклы тепловых и холодильных ма-	
вания и повышения КПД тепловых и холодильных	тепловых и холодильных ма-	лы тепловых и холодиль-	шин Знает пути повышения КПД тепловых и холодильных машин, паротурбинных установок	ческого КПД тепловых и хо-	
лы поршневых ДВС, основные параметры	Не знает теоретические циклы поршневых ДВС, октановое и цетановое число, диаграммы водяного пара, цикл Ренкина.	лы поршневых ДВС, моторное топливо, октановое и цетановое числа и пути их повышения, водяной	Знает теоретические циклы поршневых ДВС, моторное топливо, октановое и цетановое числа и пути их повышения, водяной пар, диаграммы водяного пара, цикл Ренкина, КПД цикла и пути его повышения	поршневых ДВС, моторное топливо, октановое и цетановое числа и пути их повышения, водяной пар, диаграммы водяного пара, цикл Ренкина,	
Уметь <u>ОПК-2</u>					

	метры состояния, функции состояния	метры состояния, функции	метры состояния, функции состояния и процесса	Умеет рассчитывать параметры состояния, функции состояния и процесса, выносить суждения о переходах энергии из одной формы в другую	собеседование
тические циклы ДВС с изохорным и изобарным	тические циклы ДВС с изо- хорным и изобарным подво- дом количества теплоты	ретические циклы ДВС с изохорным и изобарным подводом количества теп-	тические циклы ДВС с изо- хорным подводом количества теплоты, с изобарным подво-	Умеет рассчитывать теоретические циклы ДВС с изохорным и изобарным подводом количества теплоты, со смешанным подводом количества теплоты	собеседование
мационный поиск в на-	формационный поиск в научной, периодической, патентной литературе	формационный поиск в научной, периодической, патентной литературе	мационный поиск в научной, периодической, патентной литературе, интернете, обоб-	Умеет осуществлять информационный поиск в научной, периодической, патентной литературе, интернете, обобщать информацию и делать выводы, использовать теоретические знания при выполнении практических задач.	собеседование

7.3. Материалы для текущей аттестации

Шкалы оценивания этапа текущей аттестации приведены в табл. 7.3.

Таблица 7.3 – Этап текущей аттестации по дисциплине Б1.Б.14 «Теплотехника»

Вид	Технология	Шкала (уровени	Шкала (уровень) оценивания на этапе текущего контроля						
оценивания аудиторных занятий	оценивания	1. Отсутствие усвоения (ниже порогового) К1	2. Неполное усвоение (пороговый) К2	3. Хорошее усвоение (углубленный) КЗ	4. Отличное усвоение (продвинутый) К4				
Работа на лекциях	Выполнение заданий	Выполнение менее 50%	Выполнение выше 50%	Выполнение более 75%	Выполнение более 95%				
Работа на практических занятиях	Выполнение заданий на практических занятиях	Задание не вы- полнено, т.к. материал не усвоен	Задание вы- полнено, но отчет полно- стью не соот- ветствует требованиям	Задание выполнено, но отчет содержит незначительные замечания	Задание выполнено без замечаний				
Работа на лабораторных занятиях	Выполнение лабораторных работ и оформление отчетов о лабораторных работах	Работа не вы- полнена, т.к. материал не усвоен	Работа вы- полнена, но отчет полно- стью не соот- ветствует требованиям	Работа выпол- нена, отчет со- держит незна- чительные не- дочеты	Работа выполнена без замечаний				
	Собеседование	Отсутствие участия	Единичное высказывание	Активное уча- стие в обсужде- нии	Высказывание неординарных суждений с обоснованием точки зрения				
	Оценка:	незачет	зачет	зачет	зачет				

Критериальная оценка:

Пороговый уровень	оценка «зачет»	1.2 + 2.2+3.2+4.2 или
		1.1+2.2+3.2+4.2
Углубленный уровень	оценка «зачет»	1.3 + 2.3 +3.3 +4.3 или
		1.2+2.3+3.3+4.3
Продвинутый уровень	оценка «зачет»	1.4 + 2.4 +3.4 + 4.4 или
		1.3+2.4+3.4+4.4

7.4. Материалы для промежуточной аттестации

Формой промежуточной аттестации по дисциплине является зачет.

Шкала оценивания этапа промежуточной аттестации зачет приведена в табл. 7.4.

Таблица 7.4 – Этап промежуточной аттестации по дисциплине

Наименование	Технология									
этапа оценивания	оценивания	1. Отсутствие усвоения	2. Неполное усвоение	3. Хорошее усвоение	4. Отличное усвоение	Этапы контро-				
		(ниже	(пороговый)	углубленный)	(продвинутый)	ЛЯ				

		порогового)				
Выполнение практических работ	решение зада	ч Невыполне- ние заданий	Выполнение заданий с отдельными ошибками	Выполнение заданий с отдельными замечаниями	Выполнение полное без замечаний	защита решений
Выполнение ла- бораторных работ	Выполнение работ	невыполне- ние работ	выполнение с нарушением рекомендуе- мых методик работы	выполнение с выполнением рекомендуе- мых методик работы	выполнение с полным и точным соблюдением рекомендуемых методик работы	Допуск к работам
	Отчеты о лаборатор- ных работах		содержание отчета не полностью соответствует требованиям	содержание отчета в це- лом соответ- ствует требо- ваниям	содержание отчета полно- стью соответ- ствует требо- ваниям	отчет о лабора- торной работе
Отработка про- пущенных заня- тий	ущенных заня-		неполное ус- воение	хорошее ус- воение	отличное ус- воение	Допуск к собесе- дованию
Усвоение материала			неполное ус- воение	хорошее ус- воение	отличное ус- воение	зачет
	Деятельно- стная компонента	У отсутствие ответов на вопросы при защите заданий	умение ана- лизировать на низком уров- не	умение ана- лизировать на хорошем уровне	умение ана- лизировать и сопоставлять на высоком уровне	
	Оценка	незачет	зачет	зачет	зачет	

Критериальная оценка (на основании табл. 7.2):

Пороговый уровень	зачет	$3_1 + \mathbf{y}_1$ или $3_2 + \mathbf{y}_1$
Углубленный уровень	зачет	$3_2 + \mathbf{y}_2$ или $3_3 + \mathbf{y}_2$
		или $3_1 + \mathbf{y}_3$
Продвинутый уровень	зачет	$3_3 + \mathbf{y}_{3$ или $3_2 + \mathbf{y}_3$

Оценка «зачтено» заслуживает обучающийся, обнаруживавший знания основного учебного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по профессии, справляющийся с выполнением практических заданий, предусмотренных программой, знакомых с основной литературой, рекомендованной программой.

Оценка «зачтено» выставляется обучающимся, допустившим погрешности в ответе на зачете, но обладающим необходимыми знаниями для их устранения под руководством преподавателя.

Оценка «незачтено» выставляется обучающемуся, обнаружившему пробелы в значениях основного учебного материала, допустившему принципиальные ошибки в выполнении предусмотренных программой практических заданий. Оценка «незачтено» ставится обу-

чающимся, которые не могут продолжить обучение или приступить к профессиональной деятельности по окончании образовательного учреждения без дополнительных занятий по соответствующей дисциплине.

7.5. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной деятельности

7.5.1. Конкретная технология оценивания, оценочные средства

Конкретная технология оценивания, в зависимости от вида учебной работы, представлена в табл. 5.2-5.5, оценочные средства указаны в табл. 7.5.

Для выполнения процедур оценивания составлен паспорт оценочных средств (табл. 7.5)

Таблица 7.5 - Паспорт оценочных средств

№		Код контролируемой	Количество	Другие оценочные средства	
п/п	Тематика для контроля	компетенции (или ее части)	заданий	вид	коли- чество
		6 семест	p		
1	Тема 1.1 Предмет и задачи современной теплотехники. Параметры состояния.	ОПК-2	2		2
	Тема 2.1 Первый закон термодинамики. Внутренняя энергия. Теплоемкость газов. Энтальпия.	ОПК-2	3		3
	Тема 2.2 Второй закон термодинамики. Энтропия. Сущность 2-го закона.	ОПК-2	3	Вопросы для собеседования	4
2	Тема 2.3 Термодинамические циклы. Прямой обратимый цикл Карно. Обратный цикл Карно.	ОПК-2	3		4
	Тема 2.4 Термодинамические процессы идеальных газов в закрытых системах.	ОПК-2	2		4
3	Тема 3.1 Реальные газы. Уравнение Ван-дер-Ваальса. Парообразование. Критические параметры. Диаграммы.	ОПК-2	4		5
4	Тема 4.1 Циклы ПТУ. Цикл Ренкина. Основы теплофикации.	ОПК-2	3		3

5	Тема 5.1 Циклы ДВС. Циклы с подводом количества теплоты в процессе V=const, P=const и со смешанным подводом. Количества теплоты. Сравнение циклов поршневых ДВС. Тема 5.2 Моторное топливо. Детонационная стойкость топлива. Октановое и цетановое числа.	ОПК-2 ОПК-2	2		2
6	Тема 6.1 Циклы газотур- бинных установок. Цик- лы с подводом количест- ва теплоты в процессе P=const, V=const. Срав- нение циклов и методы повышения КПД цикла ГТУ.	ОПК-2	4	Вопросы для собеседования	3
7	Тема 7.1 Основы теории теплопроводности. Закон Фурье. Определение коэффициента теплопроводности.	ОПК-2	6		4
8	Тема 8.1 Конвективный теплообмен. Закон Ньютона-Рихмана. Определение коэффициента теплопередачи.	ОПК-2	6		4
9	Тема 9.1 Процесс тепло- передачи. Теплообмен- ные аппараты. Определе- ние коэффициента тепло- передачи.	ОПК-2	6		4

7.5.2. Комплект оценочных материалов, предназначенных для оценивания уровня сформированности компетенций на определенных этапах обучения

Объектом оценивания выступают (таблица 7.3, 7.5):

- учебная дисциплина (активность на занятиях, своевременность выполнения различных видов заданий, посещаемость всех видов занятий по аттестуемой дисциплине);
- степень усвоения теоретических знаний, уровень овладения практическими умениями и навыками (Выполнение практических заданий);

- результаты самостоятельной работы (домашняя работа).

Активность студента на занятиях оценивается на основе выполненных студентом работ и заданий, предусмотренных данной рабочей программой дисциплины.

Комплекс оценочных материалов для проведения промежуточной аттестации в форме зачета включает в себя комплект заданий для текущей и промежуточной аттестации.

7.5.2.1. Комплект оценочных материалов для текущей аттестации

Перечень вопросов к зачету по дисциплине «Теплотехника»

- 1. Роль «Теплотехники» в подготовке инженеров для автомобильного хозяйства и автомобильной промышленности.
- 2. Термодинамические системы. Термодинамический процесс. Параметры состояния.
- 3. Уравнение состояния идеального газа изопроцессов.
- 4. Объединенный закон Бойля-Мариотта и Гей-Люссака.
- 5. Уравнение Менделеева-Клайперона.
- 6. Первый Закон термодинамики. Аналитическое выражение закона через внутреннюю энергию.
- 7. Внутренняя энергия. Составляющая внутренней энергии. Внутренняя энергия сложной системы.
- 8. Теплота и работа как функции процесса. Энергетический эквивалент.
- 9. Смесь идеальных газов. Кажущаяся мольная масса. Удельная газовая постоянная.
- 10. Теплоемкость как функция процесса. Массовая, объемная, мольная теплоемкости.
- 11. Изохорная и изоборная теплоемкости. Уравнение Майера. Физическая сущность универсальной газовой постоянной.
- 12. Истинная теплоемкость. Зависимость истинной теплоемкости от температуры. Средняя теплоемкость. Теплоемкость газовых смесей.
- 13. Энтальпия как функция состояния. Дифференциальное выражение энтальпии. Аналитическое выражение первого закона термодинамики через энтальпию.
- 14. Второй закон термодинамики. Равновесные процессы.
- 15. Энтропия. Дифференциальное выражение энтропии. Тепловая теорема Нернста.
- 16. Статистические формулировки второго закона термодинамики.
- 17. Принципы работы теплового двигателя. Термический КПД двигателя
- 18. Изменение энтропии в обратимых и необратимых процессах. «Тепловая» смерть вселенной.
- 19. Цикл Карно. Прямой обратимый цикл. Теорема Карно.
- 20. Обратный цикл Карно. Холодильный коэффициент. Принципы работы теплового насоса.
- 21. Регенерация теплоты. Обобщенный регенеративный цикл Карно.
- 22. Термодинамические процессы идеальных газов в закрытых системах. Изохорный, изобарный, изотермический и адиабатный процессы. Законы Гей-Люссака, Бойля-Марриота.
- 23. Политропный процесс. Теплоемкость идеального газа в политропном процессе. Политропный процесс в P-V и T-S диаграммах.
- 24. Реальные газы. Уравнение Боголюбова-Майера. Уравнение Ван-дер-Ваальса. Критические параметры.
- 25. Парообразование. Водяной пар-пример реального газа. P-V диаграмма водяного пара.
- 26. Основные параметры пара. Влажный, сухой насыщенный пар. Перегретый пар.
- 27. Т-Ѕ диаграмма водяного пара.

- 28. Н-Ѕ диаграмма водяного пара.
- 29. Основные термодинамические процессы. Расчет этих процессов с помощью диаграмм водяного пара.
- 30. Расчет термодинамических процессов водяного пара с помощью таблиц водяного пара и воды.
- 31. Термодинамические циклы паросиловых установок. Цикл Карно насыщенного пара. Регенерация теплоты.
- 32. Схема паросиловых (ПСУ) или газотурбинных установок (ГТУ). Цикл Ренкина. Термический КПД.
- 33. Пути повышения термического КПД ц.Ренкина.
- 34. Относительный внутренний, абсолютный внутренний КПД цикла Ренкина. Экономический КПД электростанции.
- 35. Основы теплофикации.
- 36. Циклы двигателей внутреннего сгорания (ДВС). Цикл с подводом количества теплоты в процессе V=const.
- 37. Цикл с подводом количества теплоты в процессе P=const. Характеристики цикла.
- 38. Цикл со смешанным подводом количества теплоты. Характеристики цикла.
- 39. Сравнение циклов поршневого ДВС.
- 40. Моторное топливо. Детонационная стойкость. Октановое и цетановое числа. Атмосферно-вакуумная перегонка нефти.
- 41. Циклы газотурбинных установок (ГТУ). Цикл с подводом количества теплоты в процессе P=const. Характеристики цикла.
- 42. Цикл ГТУ с подводом количества теплоты в процессе V=const. Характеристики пикла.
- 43. Сравнение циклов ГТУ. Методы повышения КПД ГТУ.

Основы теории теплообмена

- 44. Способы переноса теплоты. Теплопроводность. Теплопроводность в телах различного агрегатного состояния.
- 45. Закон Фурье. Тепловой поток. Плотность теплового потока.
- 46. Термические сопротивления. Физический смысл коэффициента теплопроводности
- 47. Методы определения коэффициента теплопроводности.
- 48. Конвекция. Свободный конвективный теплообмен.
- 49. Режимы свободного конвективного теплообмена. Метод определения режима теплообмена.
- 50. Закон Ньютона-Рихмана. Физический смысл коэффициента теплоотдачи.
- 51. Числа подобия и их физический смысл.
- 52. Критериальные уравнения и их основные свойства.
- 53. Режимы вынужденного конвективного теплообмена. Метод определения режима теплообмена.
- 54. Теплообмен излучением. Закон Стефана-Больцмана.
- 55. Процесс теплопередачи.
- 56. Физический смысл коэффициента теплопередачи.
- 57. Полное термическое сопротивление.

Вопросы для собеседования при сдаче отчетов по лабораторным работам.

Пример вопросов для собеседования при сдаче лабораторной работы «Определение коэффициента теплопроводности сыпучих материалов методом трубы»

- 1. Что представляет собой теплопроводность? Каким путем осуществляется теплопроводность в телах различного агрегатного состояния?
- 2. Что называется температурным полем? Написать его уравнение в общем виде.
- 3. Уравнение одномерного стационарного температурного поля.
- 4. Что такое изотермическая поверхность?
- 5. Что называется градиентом температуры и что он характеризует?
- 6. Формулировка и математическое выражение закона Фурье.
- 7. Что называется плотностью теплового потока?
- 8. Размерность и физическая сущность коэффициента теплопроводности.
- 9. От каких факторов зависит коэффициент теплопроводности?
- 10. В каких пределах измеряется величина коэффициента теплопроводности для твердых тел, жидкостей и газов?
- 11. Почему пористые материалы имеют низкий коэффициент теплопроводности?
- 12. Записать формулу для определения плотности теплового потока через плоскую однородную стенку.
- 13. Дать выражение термического сопротивления для плоской и цилиндрической стенок
- 14. По какому закону измеряется температура в однородной плоской стенке при V=const?
- 15. Что представляет собой изотермические поверхности в неограниченной плоской стенке?
- 16. Какой характер имеют изотермические поверхности в неограниченной цилиндрической стенке?
- 17. Как измеряется температура в однородной цилиндрической стенке при постоянной величине V?
- 18. Записать формулу для определения теплового потока, передаваемого через однородную цилиндрическую стенку при стационарном режиме.
- 19. От каких величин зависит тепловой поток, передаваемый теплопроводностью через однородную плоскую стенку при стационарном режиме?
- 20. В чем состоит метод трубы для определения коэффициента теплопроводности?
- 21. Какие величины необходимо измерять для определения коэффициента теплопроводности методом пластины (плоской стенки)?

Пример вопросов для собеседования при сдаче лабораторной работы «Исследование теплоотдачи горизонтальной трубы при свободном движении воздуха»

- 1. Что представляет собой конвективный теплообмен?
- 2. Что называется процессом теплоотдачи?
- 3. Что понимают под свободным движением жидкости?
- 4. Характер изменения режима свободного движения и коэффициента теплоотдачи по высоте нагретой поверхности.
- 5. Каким образом происходит теплоотдача при ламинарном и турбулентном режиме?
- 6. Почему теплоотдача интенсивнее при турбулентном режиме, чем при ламинарном?
- 7. Закон Ньютона-Рихмана.
- 8. Размерность и физическое содержание коэффициента теплоотдачи.
- 9. От каких основных факторов зависит коэффициент теплоотдачи при свободном лвижении?
- 10. Выражения и физический смысл критерии подобия Нуссельта, Грасгофа, Прандтля, Релея.
- 11. С какой целью результаты опытов представляют в числах подобия?
- 12. Что представляют собой уравнения подобия и каковы их основные свойства?
- 13. Общий вид уравнения подобия теплоотдачи при свободном движении.

- 14. Какой вид имеет уравнение подобия теплоотдачи при свободном движении для газов одинаковой атомности?
- 15. Что называется определяющей температурой?
- 16. Методика определения теплового потока и коэффициент теплоотдачи в данной работе.
- 17. Как зависит коэффициент теплоотдачи при свободном движении от температурного напора?
- 18. Получение уравнения подобия по результатам данного опыта.

Пример вопросов для собеседования при сдаче лабораторной работы «Определение коэффициента теплопередачи»

- 1. Что называется процессом теплопередачи?
- 2. Рассмотреть вывод уравнения теплопередачи через плоскую стенку.
- 3. Единица измерения и физическая сущность коэффициента теплопередачи.
- 4. Написать выражения для определения коэффициента теплоотдачи через однослойную многослойную плоскую стенку.
- 5. Что называется полным термическим сопротивлением теплопередачи и из каких величин оно складывается?
- 6. Как определяется плотность теплового потока при теплопередаче?
- 7. Как определяются температуры поверхностей стенки при заданных температурах жидкостей?
- 8. Методика определения теплового потока и коэффициента теплопередачи опытным путем в данной работе?
- 9. Как определяется скорость потока воздуха в опытной трубе?
- 10. Как находится коэффициент теплопередачи в данной работе расчетным путем?
- 11. Как зависит коэффициент теплопередачи от скорости потока воздуха?
- 12. Рассмотреть влияние на коэффициент теплопередачи частных термических сопротивлений. Дать пояснения.
- 13. От чего зависит в основном коэффициент теплопередачи через чистую металлическую стенку при $\alpha_1 \ll \alpha_2$?

Таблица 7.6 - Оценочные средства дисциплины для текущей аттестации

	Код формируемой	Вопросы	Задания
	компетенции	(номера вопросов)	(номера заданий)
1	ОПК-2	1-57	собеседование

7.5.2.2. Комплект оценочных материалов для промежуточной аттестации

- 1. Что представляет собой теплопроводность?
- 2. Что называется температурным полем?
- 3. Что такое изотермическая поверхность?
- 4. Градиент температуры и что он характеризует?
- 5. Закон Фурье и математическое выражение закона.
- 6. Что называется плотностью теплового потока?
- 7. От каких факторов зависит коэффициент теплопроводности?
- 8. Почему пористые материалы имеют низкий коэффициент теплопроводности?
- 9. Что такое термическое сопротивление?
- 10. Как изменяется температура в однородной плоской и цилиндрической стенках?
- 11. Что представляет собой конвективный теплообмен?
- 12. Что понимают под свободным движением жидкости?

- 13. Каким образом происходит теплоотдача при ламинарном и турбулентном режиме?
- 14. Закон Ньютона-Рихмана и математическое выражение.
- 15. От каких факторов зависит коэффициент теплоотдачи при свободном движении?
- 16. Выражения и физический смысл критерии подобия.
- 17. С какой целью результаты опытов представляют в числах подобия?
- 18. Что представляют собой уравнения подобия и каковы их основные свойства?
- 19. Что называется определяющей температурой?
- 20. Как зависит коэффициент теплоотдачи при свободном движении от температурного напора?
- 21. Как определяют основные режимы движения?
- 22. Когда имеет место переходный режим вынужденного движения?
- 23. Как происходит процесс теплоотдачи при ламинарном и турбулентном режимах?
- 24. Общий вид уравнения подобия теплоотдачи для вынужденного турбулентного движения.
- 25. Как зависит коэффициент теплоотдачи от скорости потока в трубе?
- 26. Что называется процессом теплопередачи?
- 27. Выражения для определения коэффициента теплоотдачи через однослойную многослойную плоскую стенку.
- 28. Что называется полным термическим сопротивлением теплопередачи?
- 29. Как зависит коэффициент теплопередачи от скорости потока воздуха?
- 30. Объяснить влияние на коэффициент теплопередачи частных термических сопротивлений.

Таблица 7.7 - Оценочные средства дисциплины для промежуточной аттестации

Ī		Код формируемой	Вопросы	Задания
		компетенции	(номера вопросов)	(номера заданий)
Ī	1	ОПК-2	1-30	собеседование

7.6. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенний.

Методические материалы представлены ниже:

- Положение о фонде оценочных средств для установления уровня сформированности компетенций обучающихся и выпускников на соответствие требованиям Φ ГОС ВО от 5 декабря 2014г. http://www.nntu.ru/RUS/otd_sl/ymy/norm_dokym_ngty/pologo_fonde_ocen_sredstv.pdf;
- Положение о текущем контроле успеваемости и промежуточной аттестации обучающихся $H\Gamma T y$ http://www.nntu.ru/RUS/otd_sl/ymy/norm_dokymngty/pologkontrol_yspev.pdf;

8. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

Карта обеспеченности дисциплины учебно-методической литературой					
Код по учебному плану полное название дисциплины			К какой части Б	51 отно	осится дисциплина
Б1.Б.14		ζ.	обязательная	X	базовая часть цикла

Теплотехника	по выбору ст	гудента вариативная часть цикла
(полное название дисцип.	лины)	<u> </u>
23.03.03	Эксплуатация транспортно	о-технологических машин и комплексов
(код направления / специальности)	(полное название напра	авления подготовки / специальности)
ЭТТМК (аббревиатура направления / специальности)	Уровень специал подготовки х бакалавр магистр	обучения заочная
<u>2020</u> (год утверждения учебного плана ОПОП)	Семестр(ы) _3_	Количество групп <u>1</u> Количество студентов 15

Составители программы: 1) Чубенко М.Н. Дзержинский политехнический институт, кафедра «Химические и пищевые технологии» тел. 34-48-83

СПИСОК ИЗДАНИЙ

№ пп	Библиографическое описание (автор, заглавие, вид издания, место, издательство, год издания, количество страниц)	Количество экземпляров в библиотеке					
1	2	3					
1 Основная литература							
1	Нащокин В.В. Техническая термодинамика и теплопередача Высшая школа. 1980 469 с.	97					
2	Теплотехника. Учебник для вузов с грифом Минобразования. / Под ред. Луканина В.Н. М.: Высшая школа. 2002. – 671 с.						
3	, , , , , , , , , , , , , , , , , , ,						
	2 Дополнительная литература						
	2.1 Учебные и научные издания						
1	Рабинович О.М. Сборник задач по технической термодинамике. М.: Машиностроение. 1973344 с.	34					
2	Шишкин В.И. Экспериментальное изучение процессов теплообмена. Горький, ГПИ им. А.А. Жданова. 1983-119с.	47					

Основные данные об обеспеченно					`
основная литература		дата составления печена	ì	<i>программы</i> не обеспе	
дополнительная литература	х обест	течена		не обеспе	чена
Данные об обеспеченности на (дата составления рабочей программы)					
основная литература	х обест	течена		не обеспе	чена
дополнительная литература	х обест	течена		не обеспе	чена
9. Перечень ресурсов информаци ходимых для освоения дисциплин		оммуникацио	нной се	сти «Инте	ернет», необ-
9.1. Ресурсы системы федер	ральных обр	азовательных	к портај	пов:	
1. Федеральный портал. Российское	-		-		
2. Российский образовательный пор	отал. http://wv	ww.school.edu.r	u/defaul	t.asp	
3. Естественный научно-образовате	альный порта	л. http://www.e	n.edu.ru	/	
4. Федеральный правовой портал. Н	Оридическая	Pоссия. http://v	www.lav	v.edu.ru/	
5. Информационно-коммуникацион	ные техноло	гии в образова	нии. http	p://www.ic	t.edu.ru/
6. Федеральный образовательный и	портал. Соци	ально-гуманит	гарное и	и политич	еское образо-
вание. http://www.humanities.edu.ru/	,				
7. Российский портал открытого об	разования. ht	tp://www.opene	et.edu.ru	/	
8. Федеральный образовательный п 9. Федеральный образовательный п	_			_	
10. Федеральный образовате.	льный пој	ртал. М	еждунар	одное	образование.
http://www.international.edu.ru/					
11. Федеральный образовательн	ый портал.	Непрерывная	я подго	товка пре	еподавателей.
http://www.neo.edu.ru/wps/portal					
12. Государственное учреждение «	Центр исслед	цований и стат	истики	науки» ЦІ	ИСН. Офици-
альный сайт: http://www.csrs.ru/abou					
13. Официальный сайт Федерально	ой службы го	сударственной	і статис	тики РФ.	Электронный
pecypc: http://www.gks.ru.					
Зарубежные сетевые ресурсы14. Архив научных журналов издат	ельства http://	/iopscience iop	org/ит:	Л.	
mon myprimios nothin			_	- 1'	

9.2. Научно-техническая библиотека НГТУ P.E Алексеева им. http://www.nntu.ru/RUS/biblioteka/bibl.html

9.2.1. Электронные библиотечные системы Электронно-библиотечная система ООО «Издательство Лань»:

Электронный каталог книг http://library.nntu.nnov.ru/

Электронный каталог периодических изданий http://library.nntu.nnov.ru/

Информационная система доступа к каталогам библиотек сферы образования и науки ЭКБСОН http://www.vlibrary.ru/

Электронная библиотечная система «Университетская библиотека ONLINE НГТУ»

http://biblioclub.ru/index.php?page=main ub

Электронная библиотека "Айбукс" http://ibooks.ru/

Реферативные наукометрические базы

WebofSciencehttp://apps.webofknowledge.com/UA_GeneralSearch_input.do

Scopus http://www.scopus.com/

Реферативные журналы http://www.nntu.ru/RUS/biblioteka/resyrs/ref gyrnal 14.htm

Госты Нормы, правила, стандарты и законодательство России

http://www.nntu.ru/RUS/biblioteka/resyrs/norma.htm

База данных гостов РосИнформ Вологодского ЦНТИ

http://www.nntu.ru/RUS/biblioteka/resyrs/baza_gost.htm

Бюллетени новых поступлений литературы в библиотеку

http://www.nntu.ru/RUS/biblioteka/index.htm

Ресурсы Интернет http://www.nntu.ru/RUS/biblioteka/index.htm

Персональные библиографические указатели ученых НГТУ

http://www.nntu.ru/RUS/biblioteka/bibl_ych.html

Доступ онлайн

Научные журналы НЭИКОН

ЭБС ВООК.ru.

База данных зарубежных диссертаций "ProQuestDissertation&ThesesGlobal"

ЭБС ZNANIUM.COM

ЭБС издательства "Лань"

ЭБС"Айбукс"

База данных Scopus издательства Elsevier; База данных WebofScienceCoreCollection База данных Polpred.com Обзор СМИ

Электронная библиотека eLIBRARY.RU http://www.nntu.ru/RUS/biblioteka/news.html

9.3. Центр дистанционных образовательных технологий НГТУ им. Р.Е. Алексее-

ва

Электронная библиотека http://cdot-nntu.ru/?page_id=312

9.4 Научно-техническая библиотека ДПИ НГТУ http://http://www.dpi-ngtu.ru/

9.4.1. Электронные библиотечные системы

Электронно-библиотечная система ООО «Издательство Лань»: http://e.lanbook.com/ Электронно-библиотечная система издательства «ЮРАЙТ» http://biblio-online.at/home?1 Информационная система «Единое окно доступа к информационным ресурсам» http://window.edu.ru/catalog/

Госты Нормы, правила, стандарты и законодательство России http://gost-rf.ru/ Электронная библиотека eLIBRARY.RU http://elibrary.ru/defaultx.asp

9.4.2. Информационные ресурсы библиотеки ДПИ НГТУ

Электронный каталог - локально

Электронная библиотека - локально

База выполненных запросов - локально

Реферативные журналы Falcon 2.0 - локально

Справочно-поисковая система «КонсультантПлюс» - локально

Виртуальная выставка трудов преподавателей ДПИ НГТУ http://www.dpingtu.ru/aboutlibrary/1115—2015

Виртуальная выставка трудов преподавателей ДПИ НГТУ (Apxив) http://www.dpi-ngtu.ru/aboutlibrary/862-virtvistavkaprepoddpingtu

Библиографические указатели преподавателей ДПИ НГТУ http://www.dpi-ngtu.ru/aboutlibrary/798-

biblukazateliprepodovdpi

Бюллетень новых поступлений http://dpi-ngtu.ru/doc for load/novie postuplenia.pdf

Периодические издания: «Периодические издания ДПИ НГТУ»; «Сводный список журналов»;

«Журналы в интернете» http://www.dpi-ngtu.ru/aboutlibrary/periodizdaniya

Виртуальные выставки http://www.dpi-ngtu.ru/aboutlibrary/virtvistavki

Научно-техническая библиотека НГТУ им. РЕ. Алексеева

http://www.nntu.rii/RUS/biblioteka/bilt.html

9.4.3. Интернет-ресурсы http://www.dpi-ngtu.ru/aboutlibrary/resourses

Официальные сайты

Образовательные ресурсы

Библиотеки в интернете

Патенты и стандарты

Информационные центры

Энциклопедии, справочники, словари

9.4.4. Материалы в помощь студентам: http://www.dpi-ngtu.ru/aboutlibrary/resourses

10. Методические указания для обучающихся по освоению дисциплины

10.1. Методические рекомендации разработанные преподавателем:

- Методические рекомендации для студентов по организации аудиторной работы по дисциплинам, закрепленным за преподавателями кафедры ПАХПТ, утверждены на заседании кафедры от 04.02.2015 г., протокол \mathbb{N} 5.
- Циклы двигателей внутреннего сгорания. Методические указания к выполнению расчетно-графической работы по курсу «Техническая термодинамика и теплотехники» для студентов специальности 190601 «Автомобили и автомобильное хозяйство»./ Сост. Ким П.П., Перетрутов А.А., Чубенко М.Н., Комаров В.А.- Н.Новгород. 2009-16 с.

10.2. Методические рекомендации НГТУ им. Р.Е.Алексеева:

- Методические рекомендации по организации аудиторной работы. Приняты Учебнометодическим советом НГТУ им. Р.Е. Алексеева, протокол № 2 от 22 апреля 2013 г. Электронный адрес:
 - http://www.nntu.ru/RUS/otd_sl/ymy/metod_dokym_obraz/met_rekom_aydit_rab.pdf?20. Дата обращения 23.09.2015.
- Методические рекомендации по организации и планированию самостоятельной работы студентов по дисциплине. Приняты Учебно-методическим советом НГТУ им. Р.Е. Алексева, протокол № 2 от 22 апреля 2013 г. Электронный адрес: http://www.nntu.ru/RUS/otd_sl
 - /ymy/metod_dokym_obraz/met_rekom_organiz_samoct_rab.pdf?20. Учебное пособие «Проведение занятий с применением интерактивных форм и методов обучения»,Ермакова Т.И., Ивашкин Е.Г., 2013 г. Электронный адрес: http://www.nntu.ru/RUS/otd_sl/ymy/metod_dokym_obraz/provedenie-zanyatij-s-primeneniem-interakt.pdf.
- Учебное пособие «Организация аудиторной работы в образовательных организациях высшего образования», Ивашкин Е.Г., Жукова Л.П., 2014 г. Электронный адрес:

http://www.nntu.ru/RUS/otd_sl/ymy/metod_dokym_obraz/organizaciya-auditornoj-raboty.pdf.

11. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем (при необходимости)

Дисциплина, относится к группе дисциплин, в рамках которых предполагается использование информационных технологий как вспомогательного инструмента.

Информационные технологии применяются в следующих направлениях: оформление отчетов по лабораторному и практическому занятию; использование электронной образовательной среды университета; использование электронных конспектов лекций; при поиске и обработке информации по теме собеседования.

12. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Таблица 12.1 – Сведения о помещениях

№ ауд	Наименовании аудитории	Площадь,	Количество
		M^2	посадочных
			мест
1161	Аудитория лекционных занятий	60	50
3106	Аудитория практических занятий	54	25
2202	Аудитория лабораторных занятий «Теплотехника»	36	15
1436	Компьютерный класс	40	12

Таблица 12.2 – Основное учебное оборудование

№ ауд	Наименование специализиро-	Перечень основного оборудования		
	ванных аудиторий и лаборато-			
	рий			
1161	Аудитория лекционных занятий	Мультимедийное оборудование		
3106	Аудитория практических занятий	Персональные ПЭВМ		
2202	Аудитория лабораторных занятий	Лабораторное оборудование и установки		
	«Теплотехника»			
1436	Компьютерный класс	Персональные компьютеры 12 шт.		